
Monday, March 12, 2018

Computer Systems

Winter 2018

Stanford University

Computer Science Department

Lecturers: Gabbi Fisher and Chris Chute

CS 107
Lecture 18: GCC

and Make

Today's Topics

1. What really happens in GCC?
A. The Preprocessor
B. The Compiler
C. The Assembler (& Understanding Executable and Linkable

Format, ELF)
D. The Linker (& an intro to understanding libraries)

2. Make and Makefiles
A. Overview of Make
B. Makefiles from scratch
C. Template for your Makefiles

Today's Topics

1. What really happens in GCC?
A. The Preprocessor
B. The Compiler
C. The Assembler (& Understanding Executable and Linkable

Format, ELF)
D. The Linker (& an intro to understanding libraries)

2. Make and Makefiles
A. Overview of Make
B. Makefiles from scratch
C. Template for your Makefiles

Let’s go back to lecture 1…

 gcc -g -O0 multTest.c -o multTest

The GNU Compiler Collection (GCC) The Gnu Compiler Collection (GCC)

The Preprocessor

#define

#include

The Preprocessor - Object Macros

#define BUFFER_SIZE 1024

foo = (char *) malloc (BUFFER_SIZE);

The Preprocessor - Object Macros

#define BUFFER_SIZE 1024

foo = (char *) malloc (BUFFER_SIZE);

=> foo = (char *) malloc (1024);

The Preprocessor - Function Macros

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

y = min(1, 2);

=> y = ((1) < (2) ? (1) : (2));

The Preprocessor - Function Macros

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

y = min(1, 2);

=> y = ((1) < (2) ? (1) : (2));

The Preprocessor - Imports

#include

The Preprocessor - Imports
header.h

char *test (void);

program.c

#include "header.h"

int x;

int main (void) {
 puts (test ());
}

The Preprocessor - Imports
header.h

char *test (void);

program.c

char *test (void);

int x;

int main (void) {
 puts (test ());
}

The Preprocessor - Demo

gcc -E -o hello.i hello.c

Preprocess hello.c, store output in hello.i

The Gnu Compiler Collection (GCC)

The Compiler

They’re too complicated to explain in 5 minutes.

¯_(ϑ)_/¯

This is what CS 143: Compilers is for!

It’s important to know that they parse source
code and compile it into assembly code.

The Compiler - Demo

gcc -S hello.i

Compile preprocessed .i code into
assembly instructions

The Gnu Compiler Collection (GCC) The Assembler - Demo

as -o hello.o hello.s

Assemble object code from hello.s

The Assembler - ELF

ELF: the Executable and Linkable Format

The Assembler - ELF

ELF: the Executable and Linkable Format

Cross-platform, used across multiple operating
systems to represent components (object code) of a
program. This comes in handy for linking and
execution across different computers.

The Assembler - ELF

ELF: the Executable and Linkable Format

readelf -e hello.o

Actually read hello.o!
“-e” flag is for printing headers out only

The Assembler - ELF
Section Contents Code Example

.text Executable code (x86 assembly) mov -0x8(%rbp),%rax

.data Any global or static vars that have a pre-defined

value and can be modified

int val = 3;
(as global var)

.rodata Variables that are only read (never written) const int a = 0;

.bss
All uninitialized data; global variables and static
variables initialized to zero or or not explicitly
initialized in source code

static int i;

.comment Comments about the generated ELF (details
such as compiler version and execution platform)

The Assembler - ELF The Assembler - ELF

The Assembler

nm hello.o

Dump the variables and functions in hello and
see what sections they belong to!

The Assembler - ELF

The Gnu Compiler Collection (GCC) The Linker—Shared vs Static Libraries
Static Linking Dynamic Linking
1. When your program uses static

linking, the machine code of
external functions used in your
program is copied into the
executable.

2. A static library has file extension of
".a" (archive file) in Unix.

1. When your program is dynamically
linked, only an offset table is
created in the executable. The
operating system loads the
machine code needed for external
functions during execution—a
process known as dynamic linking.

2. A shared library has file extension of
".so" (shared objects) in Unix.

The Linker

ld --dynamic-linker /lib/x86_64-linux-gnu/ld-2.23.so
hello.o -o hello -lc --entry main

1. --dynamic-linker is used to specify the linker we
must use to load stdlib.

2. -lc tells the linker to link to the standard C library.
3. --entry main specifies the entry point of the

program (the method “main”).

Finally…

./hello

(Run your executable!)

The Executable

nm hello

Let’s prove to ourselves linking did
something…

The Assembler - ELF

Finally… (Really!)

./hello

(Run your executable!)

Today's Topics

1. What really happens in GCC?
A. The Preprocessor
B. The Compiler
C. The Assembler (& Understanding Executable and Linkable

Format, ELF)
D. The Linker (& an intro to understanding libraries)

2. Make and Makefiles
A. Overview of Make
B. Makefiles from scratch
C. Template for your Makefiles

What is Make?
Main Idea

 - You write the “recipe”
 - Make builds target

C Make

What is Make?
Main Idea

 - You write the “recipe”
 - Make builds target

Definition

“GNU Make is a tool which controls the generation of executables… from
the program's source files.”
 - GNU Make Docs

C Make

What is Make?
Example

 - Target: simple
 - Ingredients: simple.c

 - Recipe: gcc -o simple simple.c

C Make

simple.c simple

What is Make?
Example

 - Target: simple
 - Ingredients: simple.c

 - Recipe: gcc -o simple simple.c

Makefile Demo

C Make

simple.c simple

What is Make?
Example

 - Target: simple
 - Ingredients: simple.c

 - Recipe: gcc -o simple simple.c

Makefile Demo
 simple: simple.c

 gcc -o simple simple.c

C Make

simple.c simple

So is Make just a shorter GCC?
No!
- More general
- Any target, any shell command

So is Make just a shorter GCC?
No!
- More general
- Any target, any shell command

Makefile Demo

So is Make just a shorter GCC?
No
- More general
- Any target, any commands

Makefile Demo
 clean:

 rm -f simple

Usage:
 make clean

So is Make just a shorter GCC?
Advantages of Make

• General: Not just for compiling C source files
• Fast: Only rebuilds what’s necessary
• Shareable: End users just call “make”

Makefiles
Makefile

• Makefile: A list of rules.
• Rule: Tells Make the commands to build a target from 0 or more
dependencies

target: dependencies...
 commands
 …

Makefiles
Makefile

• Makefile: A list of rules.
• Rule: Tells Make the commands to build a target from 0 or more
dependencies

target: dependencies...
 commands
 …

Must indent with ‘\t’, not spaces

Makefiles
Makefile = List of Rules

• Rule: Tells Make how to get to a target from source files

target: dependencies...
 commands
 …

“If dependencies have changed or don’t exist, rebuild them…
Then execute these commands.”

Realistic Example
Target: File Archiver

• Like Zip
• Traverses FS tree, builds a list of files
• Don’t know length ahead of time? Need growable data structure

all_files.ark

Realistic Example
File Archiver

• Target file: Far (an executable)
• Source files: Far.c Far.h vector.c vector.h

C

C

.o

.o
vector.c/.h vector.o

Far.oFar.c/.h

Far

What is Make?
Example

 - Target: Far
 - Ingredients: Far.o, vector.o

 - Recipe: gcc -o simple Far.o vector.o

What is Make?
Example

 - Target: Far
 - Ingredients: Far.o, vector.o

 - Recipe: gcc -o simple Far.o vector.o

Makefile Demo

What is Make?
Example

 - Target: Far
 - Ingredients: Far.o, vector.o

 - Recipe: gcc -o simple Far.o vector.o

Makefile Demo
CC=gcc
CFLAGS=-g -std=c99 -pedantic -Wall

all: Far

Far: Far.o vector.o
${CC} ${CFLAGS} $^ -o $@

Far.o: Far.c Far.h vector.h
${CC} ${CFLAGS} -c Far.c

vector.o: vector.c vector.h
${CC} ${CFLAGS} -c vector.c

clean:
${RM} Far.o vector.o Far

What is Make?
Example

 - Target: Far
 - Ingredients: Far.o, vector.o

 - Recipe: gcc -o simple Far.o vector.o

Good Test Problem!
Suppose I update Far.c,

Then call make Far.

What is Make?
Example

 - Target: Far
 - Ingredients: Far.o, vector.o

 - Recipe: gcc -o simple Far.o vector.o

Good Test Problem!
Suppose I update Far.c,

Then call make Far.

Which commands does
Make run?

What is Make?
Example

 - Target: Far
 - Ingredients: Far.o, vector.o

 - Recipe: gcc -o simple Far.o vector.o

Good Test Problem!
Suppose I update Far.c,

Then call make Far.

Which commands does
Make run?

Answer:
gcc -g -std=c99 -pedantic -Wall -c Far.c
gcc -g -std=c99 -pedantic -Wall Far.o vector.o -o Far

Takeaways
Takeaways from File Archiver Example

• Recursive rules
• Bigger projects practically need Make (or another build system)
• Makefile variables (e.g., CC and CFLAGS)
• Target need not be a file! (e.g., clean)

Generic Makefile
Reusable Makefile

• Any simple project
• Main program and its header
• Can be easily extended to include libraries
• Feel free to copy-paste

Generic Makefile
Generic Makefile
CS 107 - Winter 2018

################################## SETTINGS ###################################
(1) Compiler to use
CC=gcc

(2) Compiler flags
-g3: Debugging info for GDB
-std=c99: Use the C99 standard
-pedantic: Warn me about non-standard code
-Wall: Turn on lots of compiler warnings
CFLAGS=-g3 -std=c99 -pedantic -Wall

(3) Name of executable
PROG_NAME=generic

################################### RULES #####################################
If just "make" is called, then make the program
all: $(PROG_NAME)

Build the executable from object files
$(PROG_NAME): $(PROG_NAME).o
$(CC) $(CFLAGS) -o $@ $^

Build the object file from source files
$(PROG_NAME).o: $(PROG_NAME).c $(PROG_NAME).h
$(CC) $(CFLAGS) -c $(PROG_NAME).c

Clean up
clean:
$(RM) $(PROG_NAME) *.o

Make Takeaways
In The Wild

• Will see very complex makefiles — Don’t be intimidated
• Will see other build systems (e.g., CMake) — Same idea as Make
• Will see Make for other languages — Same source -> executable mapping

 References
• https://www.gnu.org/software/make/
• https://www.cs.swarthmore.edu/~newhall/unixhelp/howto_makefiles.html
Good Makefile examples/templates.

References and Advanced Reading
References:
•The textbook is the best reference for this material.
•Here are more slides from a similar course: https://courses.engr.illinois.edu/
cs241/sp2014/lecture/06-HeapMemory_sol.pdf

Advanced Reading:
• Implementation tactics for a heap allocator: https://stackoverflow.com/questions/
2946604/c-implementation-tactics-for-heap-allocators

